Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Front Immunol ; 15: 1365172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562932

RESUMO

CAR T cell therapies face challenges in combating solid tumors due to their single-target approach, which becomes ineffective if the targeted antigen is absent or lost. Universal CAR T cells (UniCAR Ts) provide a promising solution by utilizing molecular tags (linkers), such as biotin conjugated to monoclonal antibodies, enabling them to target a variety of tumor antigens. Recently, we showed that conventional CAR T cells could penetrate the extracellular matrix (ECM) of ADCC-resistant tumors, which forms a barrier to therapeutic antibodies. This finding led us to investigate whether UniCAR T cells, targeted by soluble antibody-derived linkers, could similarly tackle ADCC-resistant tumors where ECM restricts antibody penetration. We engineered UniCAR T cells by incorporating a biotin-binding monomeric streptavidin 2 (mSA2) domain for targeting HER2 via biotinylated trastuzumab (BT). The activation and cytotoxicity of UniCAR T cells in the presence or absence of BT were evaluated in conventional immunoassays. A 3D spheroid coculture was set up to test the capability of UniCAR Ts to access ECM-masked HER2+ cells. For in vivo analysis, we utilized a HER2+ xenograft model in which intravenously administered UniCAR T cells were supplemented with intraperitoneal BT treatments. In vitro, BT-guided UniCAR T cells showed effective activation and distinct anti-tumor response. Upon target recognition, IFNγ secretion correlated with BT concentration. In the presence of BT, UniCAR T cells effectively penetrated HER2+ spheroids and induced cell death in their core regions. In vivo, upon intravenous administration of UniCAR Ts, circulating BT linkers immediately engaged the mSA2 domain and directed effector cells to the HER2+ tumors. However, these co-treated mice died early, possibly due to the lung infiltration of UniCAR T cells that could recognize both native biotin and HER2. Our results suggest that UniCAR T cells guided with soluble linkers present a viable alternative to conventional CAR T cells, especially for patients resistant to antibody therapy and those with solid tumors exhibiting high antigenic variability. Critical to their success, however, is the choice of an appropriate binding domain for the CAR and the corresponding soluble linker, ensuring both efficacy and safety in therapeutic applications.


Assuntos
Biotina , Receptor ErbB-2 , Humanos , Camundongos , Animais , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Biotina/metabolismo , Xenoenxertos , Linhagem Celular Tumoral , Linfócitos T , Citotoxicidade Celular Dependente de Anticorpos
2.
Discov Med ; 36(182): 559-570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531796

RESUMO

BACKGROUND: The epidermal growth factor receptor 2 (HER2) is overexpressed in 30% of breast cancers, and this overexpression is strongly correlated with a poor prognosis. Herceptin is a common treatment for HER2-positive breast cancer; however, cancer cells tend to adapt gradually to the drug, rendering it ineffective. The study revealed an association between the methylation status of the Homeobox C8 (HOXC8) gene and tumor development. Therefore, it is of paramount importance to delve into the interaction between HOXC8 and HER2-positive breast cancer, along with its molecular mechanisms. This exploration holds significant implications for a deeper understanding of the pathophysiological processes underlying HER2-positive breast cancer. METHOD: Tumor tissue and pathological data from patients with HER2-positive breast cancer were systematically collected. Additionally, the human HER2-positive breast cancer cell line, SKBR3, was cultured in vitro to assess both the expression level of HOXC8 and the degree of DNA methylation. The study aimed to explore the relationship between the relative expression of HOXC8 and the clinical characteristics of breast cancer patients. The expression level of HOXC8 and the promoter methylation of HOXC8 were verified by methylation treatment of SKBR3 breast cancer cells. The regulation of HOXC8 was meticulously carried out, leading to the division of the cells into distinct groups. The study further analyzed the expression levels and biological capabilities within each group. Finally, the in vitro and in vivo sensitivity of the cells to Herceptin, a common treatment for HER2-positive breast cancer, was measured to assess the efficacy of the drug. RESULT: In HER2-positive breast cancer cases characterized by poor methylation, there was an up-regulation of HOXC8. Its expression was found to be correlated with key clinical factors such as tumor size, lymph node status, clinical tumor, node, metastasis (cTNM) staging, and Herceptin resistance (p < 0.05). Upon methylation of breast cancer cells, there was a significant decrease in HOXC8 expression (p < 0.05). The study revealed that overexpression of HOXC8 resulted in increased proliferation, cloning, and metastasis of HER2-positive breast cancer cells, along with a reduced apoptosis rate (p < 0.05). Conversely, interference with HOXC8 expression reversed this scenario (p < 0.05). A Herceptin-resistant substrain, POOL2, was established using SKBR3 cells. Animal studies demonstrated that overexpressing HOXC8 accelerated tumor development and enhanced POOL2 cells' resistance to Herceptin (p < 0.05). However, following interference with HOXC8, POOL2 cells exhibited increased responsiveness to Herceptin, leading to a gradual reduction in tumor size (p < 0.05). CONCLUSIONS: In HER2-positive breast cancer, the expression of HOXC8 is elevated in a manner dependent on DNA methylation, and this elevated expression is closely linked to the pathology of the patient. Interfering with HOXC8 expression demonstrates the potential to partially inhibit the development and spread of breast cancer, as well as to alleviate resistance to Herceptin.


Assuntos
Neoplasias da Mama , Animais , Humanos , Feminino , Trastuzumab/genética , Trastuzumab/metabolismo , Trastuzumab/farmacologia , Neoplasias da Mama/patologia , Metilação de DNA , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/uso terapêutico
3.
Drug Resist Updat ; 73: 101051, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219531

RESUMO

Trastuzumab resistance in HER2+ breast cancer (BC) is the major reason leading to poor prognosis of BC patients. Oncogenic gene overexpression or aberrant activation of tyrosine kinase SRC is identified to be the key modulator of trastuzumab response. However, the detailed regulatory mechanisms underlying SRC activation-associated trastuzumab resistance remain poorly understood. In the present study, we discover that SRC-mediated YAP1 tyrosine phosphorylation facilitates its interaction with transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha, TFAP2A), which in turn promotes YAP1/TEAD-TFAP2A (YTT) complex-associated transcriptional outputs, thereby conferring trastuzumab resistance in HER2+ BC. Inhibition of SRC kinase activity or disruption of YTT complex sensitizes cells to trastuzumab treatment in vitro and in vivo. Additionally, we also identify YTT complex co-occupies the regulatory regions of a series of genes related to trastuzumab resistance and directly regulates their transcriptions, including EGFR, HER2, H19 and CTGF. Moreover, YTT-mediated transcriptional regulation is coordinated by SRC kinase activity. Taken together, our study reveals that SRC-mediated YTT complex formation and transcriptions are responsible for multiple mechanisms associated with trastuzumab resistance. Therefore, targeting HER2 signaling in combination with the inhibition of YTT-associated transcriptional outputs could serve as the treatment strategy to overcome trastuzumab resistance caused by SRC activation.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosforilação , Fator de Transcrição AP-2/metabolismo , Receptor ErbB-2/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Quinases da Família src/metabolismo , Quinases da Família src/uso terapêutico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tirosina/metabolismo , Tirosina/uso terapêutico
4.
Mol Pharm ; 20(12): 6130-6139, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37971309

RESUMO

Macrolides are widely used for the long-term treatment of infections and chronic inflammatory diseases. The pharmacokinetic features of macrolides include extensive tissue distribution because of favorable membrane permeability and accumulation within lysosomes. Trastuzumab emtansine (T-DM1), a HER2-targeting antibody-drug conjugate (ADC), is catabolized in the lysosomes, where Lys-SMCC-DM1, a potent cytotoxic agent, is processed by proteinase degradation and subsequently released from the lysosomes to the cytoplasm through the lysosomal membrane transporter SLC46A3, resulting in an antitumor effect. We recently demonstrated that erythromycin and clarithromycin inhibit SLC46A3 and attenuate the cytotoxicity of T-DM1; however, the effect of other macrolides and ketolides has not been determined. In this study, we evaluated the effect of macrolide and ketolide antibiotics on T-DM1 cytotoxicity in a human breast cancer cell line, KPL-4. Macrolides used in the clinic, such as roxithromycin, azithromycin, and josamycin, as well as solithromycin, a ketolide under clinical development, significantly attenuated T-DM1 cytotoxicity in addition to erythromycin and clarithromycin. Of these, azithromycin was the most potent inhibitor of T-DM1 efficacy. These antibiotics significantly inhibited the transport function of SLC46A3 in a concentration-dependent manner. Moreover, these compounds extensively accumulated in the lysosomes at the levels estimated to be 0.41-13.6 mM when cells were incubated with them at a 2 µM concentration. The immunofluorescence staining of trastuzumab revealed that azithromycin and solithromycin inhibit the degradation of T-DM1 in the lysosomes. These results suggest that the attenuation of T-DM1 cytotoxicity by macrolide and ketolide antibiotics involves their lysosomal accumulation and results in their greater lysosomal concentrations to inhibit the SLC46A3 function and T-DM1 degradation. This suggests a potential drug-ADC interaction during cancer chemotherapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Imunoconjugados , Cetolídeos , Maitansina , Humanos , Feminino , Ado-Trastuzumab Emtansina , Neoplasias da Mama/patologia , Cetolídeos/metabolismo , Cetolídeos/uso terapêutico , Imunoconjugados/uso terapêutico , Azitromicina , Claritromicina/farmacologia , Maitansina/farmacologia , Maitansina/uso terapêutico , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Trastuzumab/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Lisossomos/metabolismo , Antibacterianos/uso terapêutico
5.
J Nucl Med ; 64(12): 1956-1964, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857502

RESUMO

Ovarian cancer (OC) is the most lethal gynecologic malignancy (5-y overall survival rate, 46%). OC is generally detected when it has already spread to the peritoneal cavity (peritoneal carcinomatosis). This study investigated whether gadolinium-based nanoparticles (Gd-NPs) increase the efficacy of targeted radionuclide therapy using [177Lu]Lu-DOTA-trastuzumab (an antibody against human epidermal growth factor receptor 2). Gd-NPs have radiosensitizing effects in conventional external-beam radiotherapy and have been tested in clinical phase II trials. Methods: First, the optimal activity of [177Lu]Lu-DOTA-trastuzumab (10, 5, or 2.5 MBq) combined or not with 10 mg of Gd-NPs (single injection) was investigated in athymic mice bearing intraperitoneal OC cell (human epidermal growth factor receptor 2-positive) tumor xenografts. Next, the therapeutic efficacy and toxicity of 5 MBq of [177Lu]Lu-DOTA-trastuzumab with Gd-NPs (3 administration regimens) were evaluated. NaCl, trastuzumab plus Gd-NPs, and [177Lu]Lu-DOTA-trastuzumab alone were used as controls. Biodistribution and dosimetry were determined, and Monte Carlo simulation of energy deposits was performed. Lastly, Gd-NPs' subcellular localization and uptake, and the cytotoxic effects of the combination, were investigated in 3 cancer cell lines to obtain insights into the involved mechanisms. Results: The optimal [177Lu]Lu-DOTA-trastuzumab activity when combined with Gd-NPs was 5 MBq. Moreover, compared with [177Lu]Lu-DOTA-trastuzumab alone, the strongest therapeutic efficacy (tumor mass reduction) was obtained with 2 injections of 5 mg of Gd-NPs/d (separated by 6 h) at 24 and 72 h after injection of 5 MBq of [177Lu]Lu-DOTA-trastuzumab. In vitro experiments showed that Gd-NPs colocalized with lysosomes and that their radiosensitizing effect was mediated by oxidative stress and inhibited by deferiprone, an iron chelator. Exposure of Gd-NPs to 177Lu increased the Auger electron yield but not the absorbed dose. Conclusion: Targeted radionuclide therapy can be combined with Gd-NPs to increase the therapeutic effect and reduce the injected activities. As Gd-NPs are already used in the clinic, this combination could be a new therapeutic approach for patients with ovarian peritoneal carcinomatosis.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Neoplasias Peritoneais , Camundongos , Animais , Humanos , Feminino , Radioisótopos/uso terapêutico , Gadolínio , Neoplasias Peritoneais/radioterapia , Neoplasias Peritoneais/tratamento farmacológico , Distribuição Tecidual , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Radioimunoterapia , Neoplasias Ovarianas/radioterapia , Neoplasias Ovarianas/metabolismo , Lutécio/uso terapêutico , Linhagem Celular Tumoral
6.
Redox Biol ; 67: 102896, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783059

RESUMO

Trastuzumab notably improves the outcome of human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients, however, resistance to trastuzumab remains a major hurdle to clinical treatment. In the present study, we identify a circular RNA intimately linked to trastuzumab resistance. circ-ß-TrCP, derived from the back-splicing of ß-TrCP exon 7 and 13, confers trastuzumab resistance by regulating NRF2-mediated antioxidant pathway in a KEAP1-independent manner. Concretely, circ-ß-TrCP encodes a novel truncated 343-amino acid peptide located in the nucleus, referred as ß-TrCP-343aa, which competitively binds to NRF2, blocks SCFß-TrCP-mediated NRF2 proteasomal degradation, and this protective effect of ß-TrCP-343aa on NRF2 protein requires GSK3 activity. Subsequently, the elevated NRF2 transcriptionally upregulates a cohort of antioxidant genes, giving rise to trastuzumab resistance. Moreover, the translation ability of circ-ß-TrCP is inhibited by eIF3j under both basal and oxidative stress conditions, and eIF3j is transcriptionally repressed by NRF2, thus forming a positive feedback circuit between ß-TrCP-343aa and NRF2, expediting trastuzumab resistance. Collectively, our data demonstrate that circ-ß-TrCP-encoded ß-TrCP protein isoform drives HER2-targeted therapy resistance in a NRF2-dependent manner, which provides potential therapeutic targets for overcoming trastuzumab resistance.


Assuntos
Antioxidantes , Neoplasias da Mama , Humanos , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/química , Proteínas Contendo Repetições de beta-Transducina/metabolismo , RNA Circular , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Fator 2 Relacionado a NF-E2/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Isoformas de Proteínas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
7.
Mol Pharm ; 20(9): 4629-4639, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37552575

RESUMO

One of the most aggressive forms of breast cancer involves the overexpression of human epidermal growth factor receptor 2 (HER2). HER2 is overexpressed in ∼25% of all breast cancers and is associated with increased proliferation, increased rates of metastasis, and poor prognosis. Treatment for HER2-positive breast cancer has vastly improved since the development of the monoclonal antibody trastuzumab (Herceptin) as well as other biological constructs. However, patients still commonly develop resistance, illustrating the need for newer therapies. Nanobodies have become an important focus for potential development as HER2-targeting imaging agents and therapeutics. Nanobodies have many favorable characteristics, including high stability in heat and nonphysiological pH, while maintaining their low-nanomolar affinity for their designed targets. Specifically, the 2Rs15d nanobody has been developed for targeting HER2 and has been evaluated as a diagnostic imaging agent for single-photon emission computed tomography (SPECT) and positron emission tomography (PET). While a construct of 2Rs15d with the positron emitter 68Ga is currently in phase I clinical trials, the only PET images acquired in preclinical or clinical research have been within 3 h postinjection. We evaluated our in-house produced 2Rs15d nanobody, conjugated with the chelator deferoxamine (DFO), and radiolabeled with 89Zr for PET imaging up to 72 h postinjection. [89Zr]Zr-DFO-2Rs15d demonstrated high stability in both phosphate-buffered saline (PBS) and human serum. Cell binding studies showed high binding and specificity for HER2, as well as prominent internalization. Our in vivo PET imaging confirmed high-quality visualization of HER2-positive tumors up to 72 h postinjection, whereas HER2-negative tumors were not visualized. Subsequent biodistribution studies quantitatively supported the significant HER2-positive tumor uptake compared to the negative control. Our studies fill an important gap in understanding the imaging and binding properties of the 2Rs15d nanobody at extended time points. As many therapeutic radioisotopes have single or multiday half-lives, this information will directly benefit the potential of the radiotherapy development of 2Rs15d for HER2-positive breast cancer patients.


Assuntos
Antineoplásicos , Neoplasias da Mama , Anticorpos de Domínio Único , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Anticorpos de Domínio Único/metabolismo , Distribuição Tecidual , Trastuzumab/metabolismo , Tomografia por Emissão de Pósitrons , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Zircônio/química
8.
Clinics (Sao Paulo) ; 78: 100268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37567042

RESUMO

OBJECTIVE: Trastuzumab is the preferred drug for the treatment of breast cancer. However, research on the cellular mechanisms of trastuzumab's potential cardiotoxicity is insufficient. The purpose of this study was to explore the toxic effects and potential mechanism of action of trastuzumab on cardiomyocytes. METHOD: Human Cardiomyocyte (HCM) viability was assessed using the MTT method. HCM apoptosis was detected using the Hoechst33342/PI Fluorescent staining. The LDH and CK activities of the cell were measured using commercially available LDH and CK assay kits. The expression levels of Notch2, JAK2, STAT3, cleaved caspase 3, bax, and bcl 2 in HCMs were detected using western blotting. RESULTS: The results showed that 250 mg/L trastuzumab induced cardiomyocyte injury and apoptosis, inhibited viability, activated the Notch2 receptor, and inhibited JAK2/STAT3 expression in HCM. Inhibition of Notch2 expression in HCM by targeted siNotch2 transfection reversed the trastuzumab-induced injury and apoptosis, and the expression of JAK2/STAT3 returned to normal levels. CONCLUSIONS: Trastuzumab induces Notch2 expression by inhibiting the JAK2/STAT3 pathway of HCMs, promotes cell apoptosis, and causes cardiomyocyteinjury. Notch2 may be a potential target of trastuzumab-inducedmyocardial injury. This experiment reveals the mechanism of trastuzumab-induced cardiotoxicity, providing a theoretical basis for the application of trastuzumab.


Assuntos
Cardiotoxicidade , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Trastuzumab/efeitos adversos , Trastuzumab/metabolismo , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Receptor Notch2/metabolismo , Apoptose , Janus Quinase 2/metabolismo , Janus Quinase 2/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/farmacologia
9.
Front Immunol ; 14: 1133796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520563

RESUMO

Introduction: Pancreatic cancer is associated with poor prognosis, and limited treatment options are available for the majority of patients. Natural killer (NK) cells in combination with antibodies inducing antibody-dependent cell-mediated cytotoxicity (ADCC) could be a highly effective new therapeutic option in pancreatic cancer. Accurate predictive preclinical models are needed to develop successful NK cell immunotherapy. Tumor organoids, in vitro 3D organ-like structures that retain important pathophysiological characteristics of the in vivo tumor, may provide such a model. In the current study, we assessed the cytotoxic potential of adoptive NK cells against human pancreatic cancer organoids. We hypothesized that NK cell anti-tumor responses could be enhanced by including ADCC-triggering antibodies. Methods: We performed cytotoxicity assays with healthy donor-derived IL-2-activated NK cells and pancreatic cancer organoids from four patients. A 3D cytotoxicity assay using live-cell-imaging was developed and enabled real-time assessment of the response. Results: We show that NK cells migrate to and target pancreatic cancer organoids, resulting in an increased organoid death, compared to the no NK cell controls (reaching an average fold change from baseline of 2.1±0.8 vs 1.4±0.6). After 24-hours of co-culture, organoid 2D growth increased. Organoids from 2 out of 4 patients were sensitive to NK cells, while organoids from the other two patients were relatively resistant, indicating patient-specific heterogeneity among organoid cultures. The ADCC-inducing antibodies avelumab (anti-PD-L1) and trastuzumab (anti-HER2) increased NK cell-induced organoid cell death (reaching an average fold change from baseline of 3.5±1.0 and 4.5±1.8, respectively). Moreover, combination therapy with avelumab or trastuzumab resulted in complete disintegration of organoids. Finally, inclusion of ADCC-inducing antibodies was able to overcome resistance in NK-organoid combinations with low or no kill. Discussion: These results support the use of organoids as a relevant and personalized model to study the anti-tumor response of NK cells in vitro and the potential of ADCC-inducing antibodies to enhance NK cell effector function.


Assuntos
Anticorpos Monoclonais , Neoplasias Pancreáticas , Humanos , Anticorpos Monoclonais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos , Trastuzumab/farmacologia , Trastuzumab/metabolismo , Células Matadoras Naturais , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
10.
J Am Soc Mass Spectrom ; 34(6): 1086-1095, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37127550

RESUMO

Glycosylation is an important protein post-translational modification that plays a pivotal role in the bioactivity of therapeutic proteins and in the infectivity of viral proteins. Liquid chromatography with tandem mass spectrometry readily identifies protein glycans with site specificity. However, the overnight incubation used in conventional in-solution proteolysis leads to high turnaround times for glycosylation analysis, particularly when sequential in-solution digestions are needed for site-specific glycan identification. Using bovine fetuin as a model glycoprotein, this work first shows that in-membrane digestion in ∼3 min yields similar glycan identification and quantitation when compared to overnight in-solution digestion. Protease-containing membranes in a spin column enable digestion of therapeutic proteins (trastuzumab and erythropoietin) and a viral protein (SARS-CoV-2 receptor binding domain) in ∼30 s. Glycan identification is similar after in-solution and in-membrane digestion, and limited in-membrane digestion enhances the identification of high-mannose glycans in trastuzumab. Finally, stacked membranes containing trypsin and chymotrypsin allow fast sequential proteolytic digestion to site-specifically identify the glycans of SARS-CoV-2 receptor binding domain. One can easily assemble the protease-containing membranes in commercial spin columns, and spinning multiple columns simultaneously will facilitate parallel analyses.


Assuntos
COVID-19 , Peptídeo Hidrolases , Animais , Bovinos , Glicosilação , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/metabolismo , Polissacarídeos/metabolismo , Trastuzumab/metabolismo , Digestão
11.
J Immunol ; 211(2): 219-228, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37204246

RESUMO

Previous work from our group and others has shown that patients with breast cancer can generate a T cell response against specific human epidermal growth factor 2 (HER2) epitopes. In addition, preclinical work has shown that this T cell response can be augmented by Ag-directed mAb therapy. This study evaluated the activity and safety of a combination of dendritic cell (DC) vaccination given with mAb and cytotoxic therapy. We performed a phase I/II study using autologous DCs pulsed with two different HER2 peptides given with trastuzumab and vinorelbine to a study cohort of patients with HER2-overexpressing and a second with HER2 nonoverexpressing metastatic breast cancer. Seventeen patients with HER2-overexpressing and seven with nonoverexpressing disease were treated. Treatment was well tolerated, with one patient removed from therapy because of toxicity and no deaths. Forty-six percent of patients had stable disease after therapy, with 4% achieving a partial response and no complete responses. Immune responses were generated in the majority of patients but did not correlate with clinical response. However, in one patient, who has survived >14 y since treatment in the trial, a robust immune response was demonstrated, with 25% of her T cells specific to one of the peptides in the vaccine at the peak of her response. These data suggest that autologous DC vaccination when given with anti-HER2-directed mAb therapy and vinorelbine is safe and can induce immune responses, including significant T cell clonal expansion, in a subset of patients.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Feminino , Animais , Epitopos/metabolismo , Vinorelbina/metabolismo , Vinorelbina/uso terapêutico , Receptor ErbB-2 , Neoplasias da Mama/metabolismo , Imunoterapia , Peptídeos/metabolismo , Células Dendríticas , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo
12.
Clin Cancer Res ; 29(12): 2239-2249, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36976261

RESUMO

PURPOSE: Uterine carcinosarcoma (UCS), a subtype of endometrial carcinoma, is a rare and aggressive cancer with a poor prognosis. High clinical efficacy of trastuzumab deruxtecan (T-DXd) in HER2-expressing UCS was recently reported in a phase II trial (STATICE trial). We performed a co-clinical study of T-DXd using patient-derived xenograft (PDX) models of participants in the STATICE trial. EXPERIMENTAL DESIGN: Tumor specimens were resected during primary surgery or biopsied at recurrence from patients with UCS and transplanted into immunodeficient mice. Seven UCS-PDXs from six patients were established and HER2, estrogen receptor (ER), and p53 expression in PDX and the original tumor was assessed. Drug efficacy tests were performed using six of the seven PDXs. Of the six UCS-PDXs tested, two were derived from patients enrolled in the STATICE trial. RESULTS: The histopathological characteristics of the six PDXs were well-conserved from the original tumors. HER2 expression was 1+ in all PDXs, and ER and p53 expression was almost similar to that in the original tumors. Remarkable tumor shrinkage after T-DXd administration was observed in four of the six PDXs (67%), comparable with the response rate (70%) of HER2 1+ patients in the STATICE trial. Two patients enrolled in the STATICE trial showed partial response as the best response, and the clinical effect was well-replicated with marked tumor shrinkage. CONCLUSIONS: We successfully performed a co-clinical study of T-DXd in HER2-expressing UCS, along with the STATICE trial. Our PDX models can predict clinical efficacy and serve as an effective preclinical evaluation platform.


Assuntos
Carcinossarcoma , Imunoconjugados , Humanos , Animais , Camundongos , Receptor ErbB-2/metabolismo , Xenoenxertos , Proteína Supressora de Tumor p53 , Trastuzumab/metabolismo , Camptotecina , Imunoconjugados/metabolismo , Resultado do Tratamento , Receptores de Estrogênio/metabolismo
13.
Genes Cells ; 28(5): 374-382, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36811310

RESUMO

Human epidermal growth factor receptor (HER) family proteins are currently major targets of therapeutic monoclonal antibodies against various epithelial cancers. However, the resistance of cancer cells to HER family-targeted therapies, which may be caused by cancer heterogeneity and persistent HER phosphorylation, often reduces overall therapeutic effects. We herein showed that a newly discovered molecular complex between CD98 and HER2 affected HER function and cancer cell growth. The immunoprecipitation of the HER2 or HER3 protein from lysates of SKBR3 breast cancer (BrCa) cells revealed the HER2-CD98 or HER3-CD98 complex. The knockdown of CD98 by small interfering RNAs inhibited the phosphorylation of HER2 in SKBR3 cells. A bispecific antibody (BsAb) that recognized the HER2 and CD98 proteins was constructed from a humanized anti-HER2 (SER4) IgG and an anti-CD98 (HBJ127) single chain variable fragment, and this BsAb significantly inhibited the cell growth of SKBR3 cells. Prior to the inhibition of AKT phosphorylation, BsAb inhibited the phosphorylation of HER2, however, significant inhibition of HER2 phosphorylation was not observed in anti-HER2 pertuzumab, trastuzumab, SER4 or anti-CD98 HBJ127 in SKBR3 cells. The dual targeting of HER2 and CD98 has potential as a new therapeutic strategy for BrCa.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Trastuzumab/metabolismo , Trastuzumab/uso terapêutico , Anticorpos Monoclonais/metabolismo , Fosforilação , Linhagem Celular Tumoral
14.
Biotechnol Lett ; 45(3): 371-385, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650341

RESUMO

OBJECTIVES: Interferon-γ-inducible protein 10 (IP-10) is a potent antitumor agent and acts by its angiostatic and immunomodulatory properties. IP-10 can target to tumor site by linking with single chain variable fragment (scFv) that recognized specific tumor antigen. In this study, we evaluated biological activity of the fusion protein including IP-10 and anti-HER2 scFv (IP-10-(anti-HER2 scFv)). RESULTS: The HER2- and cell-based ELISA as well as the flow cytometry analysis demonstrated that the fusion protein specifically binds to HER2 antigen. In addition, competitive ELISA demonstrated that the fusion protein recognized the same epitope of HER2 antigen as trastuzumab. The results of MTT assay demonstrated that the growth of HER2-enriched SK-BR3 cells was inhibited in the presence of the fusion protein. Moreover, the cytotoxic effect of the fusion protein was not significantly different from that of trastuzumab. However, no significant cytotoxic effect compared to trastuzumab and anti-HER2 scFv was observed in HER2-low-expressing MDA-MB-231 cells. The obtained findings demonstrated that IP-10-(anti-HER2 scFv) can selectively reduce the cell viability in HER2+ cells. Moreover, similar inhibitory effect on growth of both SK-BR-3 and MDA-MB-231 cell lines was observed in the presence of anti-HER2 scFv protein even at high concentration after 72 h. The chemotaxis properties of the fusion protein were also analyzed by a chemotaxis assay. It was demonstrated that the fusion protein induced migration of activated T cell similar to recombinant IP-10 protein. CONCLUSIONS: Our findings suggested that IP-10-(anti-HER2 scFv) fusion protein can specifically direct IP-10 to the HER2-expressing tumor cells and may act as an adjuvant along with HER2-based vaccine to gather the elicited immune response at the site of HER2-overexpressimg tumors.


Assuntos
Antineoplásicos , Neoplasias da Mama , Anticorpos de Cadeia Única , Humanos , Feminino , Neoplasias da Mama/metabolismo , Quimiocina CXCL10/uso terapêutico , Receptor ErbB-2 , Trastuzumab/metabolismo , Trastuzumab/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Linhagem Celular Tumoral
15.
Cardiovasc Res ; 119(5): 1250-1264, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36651911

RESUMO

AIMS: Trastuzumab, the first humanized monoclonal antibody that targets human epidermal growth factor receptor 2 (ERBB2/HER2), is currently used as a first-line treatment for HER2 (+) tumours. However, trastuzumab increases the risk of cardiac complications without affecting myocardial structure, suggesting a distinct mechanism of cardiotoxicity. METHODS AND RESULTS: We used medium from trastuzumab-treated human umbilical vein endothelial cells (HUVECs) to treat CCC-HEH-2 cells, the human embryonic cardiac tissue-derived cell lines, and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to assess the crosstalk between vascular endothelial cells (VECs) and cardiomyocytes. Protein mass spectrometry analysis was used to identify the key factors from VECs that regulate the function of cardiomyocytes. We applied RNA-sequencing to clarify the mechanism, by which PTX3 causes cardiac dysfunction. We used an anti-human/rat HER2 (neu) monoclonal antibody to generate a rat model that was used to evaluate the effects of trastuzumab on cardiac structure and function and the rescue effects of lapatinib on trastuzumab-induced cardiac side effects. Medium from trastuzumab-treated HUVECs apparently impaired the contractility of CCC-HEH-2 cells and iPSC-CMs. PTX3 from VECs caused defective cardiomyocyte contractility and cardiac dysfunction in mice, phenocopying trastuzumab treatment. PTX3 affected calcium homoeostasis in cardiomyocytes, which led to defective contractile properties. EGFR/STAT3 signalling in VECs contributed to the increased expression and release of PTX3. Notably, lapatinib, a dual inhibitor of EGFR/HER2, could rescue the cardiac complications caused by trastuzumab by blocking the release of PTX3. CONCLUSION: We identified a distinct mode of cardiotoxicity, wherein the activation of EGFR/STAT3 signalling by trastuzumab in VECs promotes PTX3 excretion, which contributes to the impaired contractility of cardiomyocytes by inhibiting cellular calcium signalling. We confirmed that lapatinib could be a feasible preventive agent against trastuzumab-induced cardiac complications and provided the rationale for the combined application of lapatinib and trastuzumab in cancer therapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Cardiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Ratos , Animais , Feminino , Trastuzumab/toxicidade , Trastuzumab/metabolismo , Lapatinib/efeitos adversos , Lapatinib/metabolismo , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Células Endoteliais/metabolismo , Cálcio/metabolismo , Quinazolinas/efeitos adversos , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais/efeitos adversos , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Cardiopatias/metabolismo , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/toxicidade
16.
Clin Cancer Res ; 29(3): 571-580, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36413222

RESUMO

PURPOSE: In JACOB trial, pertuzumab added to trastuzumab-chemotherapy did not significantly improve survival of patients with HER2-positive metastatic gastric cancer, despite 3.3 months increase versus placebo. HER2 copy-number variation (CNV) and AMNESIA panel encompassing primary resistance alterations (KRAS/PIK3CA/MET mutations, KRAS/EGFR/MET amplifications) may improve patients' selection for HER2 inhibition. EXPERIMENTAL DESIGN: In a post hoc analysis of JACOB on 327 samples successfully sequenced by next-generation sequencing (NGS; Oncomine Focus DNA), HER2 CNV, HER2 expression by IHC, and AMNESIA were correlated with overall response rate (ORR), progression-free survival (PFS), and overall survival (OS) by univariable/multivariable models. RESULTS: Median HER2 CNV was 4.7 (interquartile range, 2.2-16.9). HER2 CNV-high versus low using the median as cutoff was associated with longer median PFS (10.5 vs. 6.4 months; HR = 0.48; 95% confidence interval: 0.38-0.62; P < 0.001) and OS (20.3 vs. 13.0 months; HR = 0.54; 0.42-0.72; P < 0.001). Combining HER2 CNV and IHC improved discriminative ability, with better outcomes restricted to HER2-high/HER2 3+ subgroup. AMNESIA positivity was found in 51 (16%), with unadjusted HR = 1.35 (0.98-1.86) for PFS; 1.43 (1.00-2.03) for OS.In multivariable models, only HER2 CNV status remained significant for PFS (P < 0.001) and OS (P = 0.004). Higher ORR was significantly associated with IHC 3+ [61% vs. 34% in 2+; OR = 3.11 (1.89-5.17)] and HER2-high [59% vs. 43% in HER2-low; OR = 1.84 (1.16-2.94)], with highest OR in the top CNV quartile. These biomarkers were not associated with treatment effect of pertuzumab. CONCLUSIONS: HER2 CNV-high assessed by NGS may be associated with better ORR, PFS, and OS in a JACOB subgroup, especially if combined with HER2 3+. The negative prognostic role of AMNESIA requires further clinical validation.


Assuntos
Neoplasias da Mama , Neoplasias Gástricas , Humanos , Feminino , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Variações do Número de Cópias de DNA , Proteínas Proto-Oncogênicas p21(ras)/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/tratamento farmacológico
17.
Front Endocrinol (Lausanne) ; 13: 1010092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329884

RESUMO

Protein expression, activation and stability are regulated through inter-connected signal transduction pathways resulting in specific cellular states. This study sought to differentiate between the complex mechanisms of intrinsic and acquired trastuzumab resistance, by quantifying changes in expression and activity of proteins (phospho-protein profile) in key signal transduction pathways, in breast cancer cellular models of trastuzumab resistance. To this effect, we utilized a multiplex, bead-based protein assay, DigiWest®, to measure around 100 proteins and protein modifications using specific antibodies. The main advantage of this methodology is the quantification of multiple analytes in one sample, utilising input volumes of a normal western blot. The intrinsically trastuzumab-resistant cell line JIMT-1 showed the largest number of concurrent resistance mechanisms, including PI3K/Akt and RAS/RAF/MEK/ERK activation, ß catenin stabilization by inhibitory phosphorylation of GSK3ß, cell cycle progression by Rb suppression, and CREB-mediated cell survival. MAPK (ERK) pathway activation was common to both intrinsic and acquired resistance cellular models. The overexpression of upstream RAS/RAF, however, was confined to JIMT 1; meanwhile, in a cellular model of acquired trastuzumab resistance generated in this study (T15), entry into the ERK pathway seemed to be mostly mediated by PKCα activation. This is a novel observation and merits further investigation that can lead to new therapeutic combinations in HER2-positive breast cancer with acquired therapeutic resistance.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Proteína Quinase C/metabolismo
18.
MAbs ; 14(1): 2122957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36151884

RESUMO

Biotherapeutics are exposed to common transition metal ions such as Cu(II) and Fe(II) during manufacturing processes and storage. IgG1 biotherapeutics are vulnerable to reactive oxygen species (ROS) generated via the metal-catalyzed oxidation reactions. Exposure to these metal ions can lead to potential changes to structure and function, ultimately influencing efficacy, potency, and potential immunogenicity of the molecules. Here, we stress four biotherapeutics of the IgG1 subclass (trastuzumab, trastuzumab emtansine, anti-NaPi2b, and anti-NaPi2b-vc-MMAE) with two common pharmaceutically relevant metal-induced oxidizing systems, Cu(II)/ ascorbic acid and Fe(II)/ H2O2, and evaluated oxidation, size distribution, carbonylation, Fc effector functions, antibody-dependent cellular cytotoxicity (ADCC) activity, cell anti-proliferation and autophaghic flux. Our study demonstrates that the extent of oxidation was metal ion-dependent and site-specific, leading to decreased FcγRIIIa and FcRn receptor binding and subsequently potentially reduced bioactivity, though antigen binding was not affected to a great extent. In general, the monoclonal antibody (mAb) and corresponding antibody-drug conjugate (ADC) showed similar impacts to product quality when exposed to the same metal ion, either Cu(II) or Fe(II). Our study clearly demonstrates that transition metal ion binding to therapeutic IgG1 mAbs and ADCs is not random and that oxidation products show unique structural and functional ramifications. A critical outcome from this study is our highlighting of key process parameters, route of degradation, especially oxidation (metal catalyzed or via ROS), on the CH1 and Fc region of full-length mAbs and ADCs.Abbreviations: DNPH 2,4-dinitrophenylhydrazine; ADC Antibody drug conjugate; ADCC Antibody-dependent cellular cytotoxicity; CDR Complementary determining region; DTT Dithiothreitol; HMWF high molecular weight form; LC-MS Liquid chromatography-mass spectrometry; LMWF low molecular weight forms; MOA Mechanism of action; MCO Metal-catalyzed oxidation; MetO Methionine sulfoxide; mAbs Monoclonal antibodies; MyBPC Myosin binding protein C; ROS Reactive oxygen species; SEC Size exclusion chromatography.


Assuntos
Antineoplásicos Imunológicos , Imunoconjugados , Ado-Trastuzumab Emtansina , Anticorpos Monoclonais/química , Ácido Ascórbico , Catálise , Ditiotreitol , Compostos Ferrosos , Peróxido de Hidrogênio , Imunoglobulina G/química , Miosinas/metabolismo , Oxirredução , Proteína C/metabolismo , Espécies Reativas de Oxigênio , Trastuzumab/metabolismo , Trastuzumab/farmacologia
19.
Microb Cell Fact ; 21(1): 157, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953849

RESUMO

BACKGROUND: Expansion of the genetic code is a frequently employed approach for the modification of recombinant protein properties. It involves reassignment of a codon to another, e.g., unnatural, amino acid and requires the action of a pair of orthogonal tRNA and aminoacyl tRNA synthetase modified to recognize only the desired amino acid. This approach was applied for the production of trastuzumab IgG carrying p-azido-L-phenylalanine (pAzF) in the industrial yeast Pichia pastoris. Combining the knowledge of protein folding and secretion with bioreactor cultivations, the aim of the work was to make the production of monoclonal antibodies with an expanded genetic code cost-effective on a laboratory scale. RESULTS: Co-translational transport of proteins into the endoplasmic reticulum through secretion signal prepeptide change and overexpression of lumenal chaperones Kar2p and Lhs1p improved the production of trastuzumab IgG and its Fab fragment with incorporated pAzF. In the case of Fab, a knockout of vacuolar targeting for protein degradation further increased protein yield. Fed-batch bioreactor cultivations of engineered P. pastoris strains increased IgG and IgGpAzF productivity by around 50- and 20-fold compared to screenings, yielding up to 238 mg L-1 and 15 mg L-1 of fully assembled tetrameric protein, respectively. Successful site-specific incorporation of pAzF was confirmed by mass spectrometry. CONCLUSIONS: Pichia pastoris was successfully employed for cost-effective laboratory-scale production of a monoclonal antibody with an unnatural amino acid. Applying the results of this work in glycoengineered strains, and taking further steps in process development opens great possibilities for utilizing P. pastoris in the development of antibodies for subsequent conjugations with, e.g., bioactive payloads.


Assuntos
Aminoácidos , Pichia , Aminoácidos/metabolismo , Anticorpos Monoclonais/metabolismo , Formação de Anticorpos , Imunoglobulina G , Pichia/metabolismo , Proteínas Recombinantes , Saccharomyces cerevisiae/metabolismo , Saccharomycetales , Trastuzumab/metabolismo
20.
Proc Natl Acad Sci U S A ; 119(32): e2201073119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914167

RESUMO

Breast cancers (BrCas) that overexpress oncogenic tyrosine kinase receptor HER2 are treated with HER2-targeting antibodies (such as trastuzumab) or small-molecule kinase inhibitors (such as lapatinib). However, most patients with metastatic HER2+ BrCa have intrinsic resistance and nearly all eventually become resistant to HER2-targeting therapy. Resistance to HER2-targeting drugs frequently involves transcriptional reprogramming associated with constitutive activation of different signaling pathways. We have investigated the role of CDK8/19 Mediator kinase, a regulator of transcriptional reprogramming, in the response of HER2+ BrCa to HER2-targeting drugs. CDK8 was in the top 1% of all genes ranked by correlation with shorter relapse-free survival among treated HER2+ BrCa patients. Selective CDK8/19 inhibitors (senexin B and SNX631) showed synergistic interactions with lapatinib and trastuzumab in a panel of HER2+ BrCa cell lines, overcoming and preventing resistance to HER2-targeting drugs. The synergistic effects were mediated in part through the PI3K/AKT/mTOR pathway and reduced by PI3K inhibition. Combination of HER2- and CDK8/19-targeting agents inhibited STAT1 and STAT3 phosphorylation at S727 and up-regulated tumor suppressor BTG2. The growth of xenograft tumors formed by lapatinib-sensitive or -resistant HER2+ breast cancer cells was partially inhibited by SNX631 alone and strongly suppressed by the combination of SNX631 and lapatinib, overcoming lapatinib resistance. These effects were associated with decreased tumor cell proliferation and altered recruitment of stromal components to the xenograft tumors. These results suggest potential clinical benefit of combining HER2- and CDK8/19-targeting drugs in the treatment of metastatic HER2+ BrCa.


Assuntos
Neoplasias da Mama , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Lapatinib/farmacologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/metabolismo , Trastuzumab/metabolismo , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...